MATHEMATICAL ENGINEERING TECHNICAL REPORTS A Proof of the M-Convex Intersection Theorem

نویسنده

  • Kazuo MUROTA
چکیده

This short note gives an alternative proof of the M-convex intersection theorem, which is one of the central results in discrete convex analysis. This note is intended to provide a direct simpler proof accessible to nonexperts. 1 M-Convex Intersection Theorem The M-convex intersection theorem [3, Theorem 8.17] reads as follows, where V is a nonempty finite set, and Z and R are the sets of integers and reals, respectively; see §3 for the definitions of M\-convex functions and notation arg min. This theorem is equivalent to the M-separation theorem, to the Fenchel-type min-max duality theorem, and to an optimality criterion of the M-convex submodular flow problem. Theorem 1 (M-convex intersection theorem). For M\-convex functions f1, f2 and a point x∗ ∈ domf1 ∩ domf2 we have f1(x∗) + f2(x∗) ≤ f1(x) + f2(x) (∀x ∈ Z ) (1) if and only if there exists p∗ ∈ RV such that1 f1[−p∗](x∗) ≤ f1[−p∗](x) (∀x ∈ Z ), (2) f2[+p∗](x∗) ≤ f2[+p∗](x) (∀x ∈ Z ). (3) For such p∗ we have arg min(f1 + f2) = arg minf1[−p∗] ∩ arg minf2[+p∗]. (4) Moreover, if f1 and f2 are integer-valued, we can choose integer-valued p∗ ∈ ZV . We shall give a constructive proof of Theorem 1 based on the successive shortest path algorithm. Different proofs available in [3] are: ∗Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656, Japan E-mail: [email protected] Notation: f1[−p](x) = f1(x)− X v∈V p∗(v)x(v), f2[+p ∗](x) = f2(x) + X

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the norm of the derived‎ subgroups of all subgroups of a finite group

In this paper‎, ‎we give a complete proof of Theorem 4.1(ii) and a new‎ ‎elementary proof of Theorem 4.1(i) in [Li and Shen‎, ‎On the‎ ‎intersection of the normalizers of the derived subgroups of all‎ ‎subgroups of a finite group‎, ‎ J‎. ‎Algebra, ‎323  (2010) 1349--1357]‎. ‎In addition‎, ‎we also give a generalization of Baer's Theorem‎.

متن کامل

The Basic Theorem and its Consequences

Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...

متن کامل

Frobenius kernel and Wedderburn's little theorem

We give a new proof of the well known Wedderburn's little theorem (1905) that a finite‎ ‎division ring is commutative‎. ‎We apply the concept of Frobenius kernel in Frobenius representation theorem in finite group‎ ‎theory to build a proof‎.

متن کامل

Strong convergence theorem for finite family of m-accretive operators in Banach spaces

The purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex Banach spacehaving a uniformly Gateaux differentiable norm. As a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.

متن کامل

A Uniqueness Theorem of the Solution of an Inverse Spectral Problem

This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004